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Instability of steady natural convection in a 
vertical fluid layer 
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(Received 4 April 1977) 

The instability of steady natural convection of a stably stratified fluid between vertical 
surfaces maintained at  different temperatures is analysed. The linear stability theory 
is employed to obtain the critical Grashof and Rayleigh numbers, for widely varying 
levels of the stable background stratification, for Prandtl numbers ranging from 0.73 
to 1000 and for the limiting case of infinite Prandtl number. The energetics of the 
critical disturbance modes also are investigated. The numerical results show that, if the 
value of the Prandtl number is in the low to moderate range, there is a transition from 
stationary to travelling-wave instability if the stratification exceeds a certain magni- 
tude. However, if the Prandtl number is large, the transition, with increasing stratifica- 
tion, is from travelling-wave to stationary instability. The theoretical predictions are 
in excellent agreement with the experimental observations of Elder (1965) and of 
Vest & Arpaci (1969), for stationary instability, and in fair to good agreement with the 
experimental results of Hart (197 l), for travelling-wave instability. 

1. Introduction 
The classical problem of natural convection in a rectangular enclosure with a fixed 

temperature difference between the side walls has been studied analytically, experi- 
mentally, and numerically by many investigators (Batchelor 1954; Eckert & Carlson 
1961 ; Mordchelles-Regnier & Kaplan 1963; Elder 1965; Gill 1966; Elder 1966; Wilkes & 
Churchill 1966; de Vahl Davis 1968; MacGregor & Emery 1969; Oshima 1971). The 
properties of the flow are governed by three dimensionless parameters: the Prandtl 
number, 

the aspect ratio, 

and either the Grashof number, 

or, equivalently, the Rayleigh number, 

Pr = V / K ,  ( 1 . 1 )  

h = HID, (1.2) 

Gr = g$ATDs/v2, (1.3) 

Ra = PrGr, (1.4) 

where g is the gravitational acceleration, v ,  K and $ are the kinematic viscosity, thermal 
diffusivity and coefficient of thermal expansion of the fluid, AT is the temperature 
difference between the side walls, and H and D are the height and width of the slot, 
respectively. In  a narrow enclosure (i.e. a vertical slot with h >> l), three distinct 
regimes of flow can occur, each corresponding to a different range of values of the 
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Rayleigh number. If Ra is small (conduction regime), there is little or no variation of 
the fluid temperature with height, and heat is transferred between the vertical walls 
primarily by conduction, However, as Ra is increased, a stable vertical temperature 
gradient develops in the core of the flow (transition regime), and vertical velocities are 
progressively diminished. Finally, if Ra becomes sufficiently large (boundary-layer or 
convection regime), the flow is confined to boundary layers at  the side walls, and the 
dominant mode of heat transfer is convection. 

Instability of the base flow in the vertical slot occurs when Gr becomes greater than 
a certain critical value. The stability characteristics of the flow in the conduction 
regime are well established (Gershuni 1953; Birikh 1966; Rudakov 1966; Gotoh & 
Satoh 1966; Rudakov 1967; Vest & Arpaci 1969; Gotoh & Ikeda 1972; Birikh et al. 
1972; Korpela, Goziim & Baxi 1973), the most interesting being that the type of 
instability is determined by the magnitude of the Prandtl number. The critical 
disturbance modes are stationary when Pr < 12.7, but they are travelling waves 
when Pr 2 12-7. 

Stability analyses of the transition and boundary -layer regimes have been carried 
out only for specialized conditions or for restricted ranges of the governing parameters. 
Vest & Arpaci (1969) studied the onset of stationary instability in the boundary-layer 
regime and reported fair agreement between their theoretical and experimental values 
for the critical Grashof number. Unfortunately, the authors omitted a term, involving 
the vertical temperature gradient, in the linearized disturbance equations, and, hence, 
their results must be interpreted with caution. Birikh et al. (1969) and Gotoh & 
Mizushima (1973) found that the critical Grashof number for stationary instability 
increases with increasing vertical stratification, but their calculations were done for 
Pr no greater than 7.5 and only for low to moderate levels of stratification. In  contrast, 
the computational and experimental work of Hart (197 1) indicates that travelling- 
wave instability occurs in water (Pr = 6.7) if the vertical temperature gradient is 
sufficiently large. Gill & Kirkham (1970) analysed the limiting case of infinite Pr and 
also found travelling waves to be the cause of instability, irrespective of the level of 
stratification. However, their predictions are not consistent with observations of 
stationary, roll-type instabilities in experiments with high Prandtl number fluids 
(Elder 1965; Vest & Arpaci 1969). Also, numerical solutions of the steady-state 
Boussinesq equations for Pr = 1000 have confirmed the existence of a steady, 
multicellular, secondary flow at values of Gr much less than the critical value for 
travelling-wave instability (de Vahl Davis & Mallinson 1975). 

Clearly, while much has been learned regarding the instability of the conduction 
regime, our understanding of instability in the transition and boundary -layer regimes 
is far from complete. The seriousness of this deficiency is accentuated by the fact that 
the latter types of flow are most commonly encountered in practical situations. 

The purpose of this study is to examine the stability properties of the transition and 
boundary-layer regimes in detail. Stability computations were performed over a large 
interval in magnitude of the stable background stratification, for Prandtl numbers 
ranging from 0.73 to 1000 and for the limiting case of infinite Prandtl number. In 
addition, the energetics of the critical disturbance modes were investigated at  each 
computed critical point. The results show that there is a marked variation in the 
stability characteristics of the flow depending upon the relative magnitudes of the 
governing parameters. These variations are related to changes in the dominant energy 
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sources for the instability. At low to moderate values of Pr, a transition from stationary 
to travelling-wave instability takes place when the vertical stratification becomes 
sufficiently large. However, at high Prandtl numbers, increasing the vertical stratifica- 
tion causes a transition from travelling-wave to stationary inst,ability. The disturbance 
energy calculations indicate that instability of the flow is mechanically driven at  low 
to moderate Prandtl numbers, if the vertical stratification is not too large, and 
buoyancy driven a t  high Prandtl numbers and at  high levels of the stratification. The 
theoretical predictions for Gr, are in excellent agreement with the experimental values 
reported by Elder (1965) and by Vest & Arpaci (1969) for stationary instabilities at  
both low and high Prandtl numbers, and in fair to good agreement with the experi- 
mental data of Hart (1971) for travelling-wave instability at moderate Prandtl 
number. 

Recently, after the research reported in this paper was completed, an investigation 
dealing with the same problem was published by Mizushima & Gotoh (1976). Stability 
calculations were done for Pr = 7.5 and a few values of the stratification parameter. 
Their results are qualitatively similar to some of those presented in this work, but, at  
the same time, there are significant quantitative differences. A fuller discussion of their 
paper is presented in § 7. 

2. The base flow 
The geometric arrangement of the problem is illustrated schematically in figure 1. 

An incompressible, Newtonian fluid of kinematic viscosity v ,  thermal diffusivity K ,  and 
coefficient of thermal expansion pis contained in a vertical channel, of width D, defined 
in the Cartesian co-ordinate system (x, y, z )  by - 00 < x < 00,0 < y < D, - 00 < z < 00. 

The gravitational acceleration vector g acts antiparallel to the + z  axis. A uniform 
temperature gradient, S > 0, is maintained in the z direction along each of the channel 
walls, resulting in a stable vertical density stratification in the fluid at  rest. The base 
flow is generated by applying a constant temperature difference, AT, between the 
lateral boundaries. 

Using the linear equation of state 

P = -PoPT, (2.1) 
and introducing the set of scales [D,  gpATD2/v, AT,pogpATD, v/(gpATD)] for 
length, velocity, temperature, pressure, and time, respectively, the non-dimensional 
field equations and boundary conditions governing the fluid motion, under the 
Boussinesq approximation, are 

Gr(av/at + V .  V V )  = - Vp + T k  + V2v, 
v .v  = 0, 

Ra(aT/at + V . V T )  = V ~ T ,  
v ( x , O , z )  = 0 = v ( x ,  l , z ) ,  

T(x,  0 ,  Z) = 4 + 72, 
T ( x ,  1 , ~ )  = - - Q + ~ z .  

The velocity, v = (u, v, w), the pressure, p ,  t,he temperature, T ,  and the density, p, are 
measured relat'ive to arbitrary reference quantities in the static state, k is a unit vector 
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T= T= 1 A T+ Sz 
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FIGURE 1. Schematic illustration of the problem geometry. 

along the + z axis, and t is the time. The dimensionless vertical temperature gradient 7 

(2.31 is given by 7 = SD/AT. 
Equations (2.2) yield exact solutions for the basic state of the form v = (0, 0, W(y)), 

p = p(y), T = O(y) +TZ (see Elder 1965), where W and 0 are the real parts of 

( 2 . 4 ~ )  
(2.4b) 

sinh [( 1 +mi )  yy] - sinh [(l + m i )  y(1- y)] fJY) = sinh [( 1 f mi)  73 , m = + 1 ,  ( 2 . 4 ~ )  

y = (47Ra)k (2 .4d )  

The cross-stream velocity and temperature profiles, W(y) and O(y), are displayed 
in figure 2 for values of the stratification parameter, y ,  ranging from 0.1 (conduction 
regime) to 10 (boundary-layer regime). Reversals in the horizontal temperature 
gradient occur in the central part of the channel when y 2 4.8, and reversals in the 
vertical velocity are found in the same region when y > 8. In the limit y+O ( T - + O ) ,  
W(y) and O(y) approach the simple conduction profiles 

In  the opposite limit, y -+ co (D-+ co), we obtain t.he boundary-layer solutions, derived 
by Gill & Davey (1969), for t,he flow adjacent to a single heated wall laterally bounding 
a stably stratified fluid: 

W(Y) = "-6)3-i(Y-i)1, @(Y) = - ( Y - i ) .  (2.5) 

*. 
(2.6) ~ ( 7 )  = e-vsinq, G(q)  = e-qcosq, 
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FIGURE 2. Base flow velocity (W x lo2) and temperature (0) profiles for various values 
of the stratification parameter, y. 

A h 

in which the new scaling is rj = yy, W = 4y2 W ,  and 0 = 2 0 .  This boundary-layer flow 
is commonly referred to as the buoyancy layer. 

3. Linear stability theory 
Small disturbances of arbitrary form are superimposed upon the basic state in the 

(3.1) 

The linearized equations governing the initial growth or decay of the disturbances are 
derived in the usual way by introducing (3.1) into the original Boussinesq system (2.2) 
and neglecting terms O(e2). Only two-dimensional disturbances in the y, z plane will 
be considered, even though Squire's theorem, which reduces the full three-dimensional 
stability problem to an equivalent two-dimensional one, is not valid unless 7 = 0. This 
is not a serious restriction, because experiments have shown the basic state to be most 
unstable to perturbations of this type. Accordingly, all disturbance variables are 
functions of (y, z ,  t )  alone, and u' 3 0. The general solution of the stability equations 
then can be written as a superposition of Fourier modes of the form 

following manner: 
(v, ~ , p )  = (w, o + 7 Z , o )  +€(v', r,pf), 8 g 1.  

($(Y,Z), U Y , Z ) )  = (~(y),B(y))exp[ia(z-ct)l, (3.2) 

vf = -$$, wf = $Fy, (3.3) 

where the perturbation stream function $ is defined by 



748 R. F .  Bergholz 

and the functions $ ( y )  and 8(y) satisfy 

P2q5 - iaGr[( W- c )  2'9 - W"$] + 8' = 0, ( 3 . 4 4  
(3 .4b )  

$ = q 5 ' = 8 = 0  on y = o , 1 ,  (3 .4c )  
2' = d2/dy'-a2, ( 3 . 4 4  

2 8  - i a ~ ~ [ (  w - c )  e - ~ $ 1  - 4y4q5' = 0,  

with primes denoting ordinary differentiation with respect to y. The wavenumber, a, 
is assumed to be real, and the wave speed, c = c7+ici ,  is complex. Here, and in the 
remainder of the paper, subscripts r and i refer to the real and imaginary parts of a 
complex quantity, respectively. If c, = 0, the disturbance mode is stationary; other- 
wise, it is a travelling wave. Note that in (3 .4b )  the stratification parameter, y ,  has 
been substituted in place of the dimensionless vertical temperature gradient, 7, as an 
independent parameter of the problem. The choice is arbitrary, because y and 7 are 
related through ( 2 . 4 d ) .  The aspect ratio, h, could also be used, but then 7 must be 
determined empirically as a function of Ra and h (see Hart 1971). For our purposes, 
this is not as convenient as specifying y (or 7 )  directly. 

The system (3.4a-d) defines an eigenvalue problem in which Pr, y ,  Gr, and a are 
parameters, and 

is an eigenvalue. The marginal stability boundary is simply a curve for Gr(a; Pr, y )  on 
which A, = 0. This curve may have one or more minima depending upon the values of 
Pr and y .  In  addition, if the flow is subject to both stationary and travelling-wave 
instability, the neutral curves for each might be very different. In  any event, the critical 
Grashof number, Gr,, and critical wavenumber, a,, correspond to the absolute minimum 
of G r ( a ;  Pr, y )  over all a. 

It is of interest to derive the asymptotic form of the system (3 .4a-d)  in the limit 
y + m .  Using the transformations 7 = y y ,  H'= 4 y 2 W ,  0 = 2 0 ,  6 = 2y3#, and 8 = 8, 
we obtain 

$ 2 6 -  i&8[( $- t )9& I?"$] + 28.  = 0, ( 3 . 6 a )  
$8- id I?~r[( l j - - -  C) 8- ;'$I- 26' = 0, (3 .6b)  

$ = $ ' = s = o  at y = o ,  ( 3 . 6 ~ )  

$,$-to as y+m, ( 3 . 6 d )  

A = -  iacGr (3 .5 )  

A A 

h 

h 

h 

where Y = d2/dq2 - &', 

and 3 = Gr/4y3 ,  d = a / y ,  i2 = 4y2c. (3.7) 

The limit y - t m  was taken with I?, d ,  and C fixed. Equations (3 .6a-d)  are precisely 
those given by Gill & Davey (1969) for the buoyancy layer, with F? and 6 given by (2 .6 ) .  
The new parameter I? is the boundary layer Reynolds number. 

4. Power integrals 
Considerable insight into the mechanisms involved in the onset of instability can be 

achieved by using the global power balance to calculate the relative magnitudes of the 
sources and sinks of disturbance energy in the flow. Letting q5* and 8* represent the 
complex conjugates of q5 and 8, the power balance is obtained by hhe following 
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procedure. Multiply (3.4a) by $*, (3.4El) by P, integrate over the interval 0 6 y 6 1 ,  
and take the real parts of the results. This gives 

where 

(4.1 a )  
(4.1 b )  

( 4 . 1 ~ )  

(4 . ld)  

and L?l = W 9  - W”. The quantities Ek and Ep are the kinetic and potential energies 
of the disturbance, respectively, and aci GrE, and aci GrE, are the time rates of change 
of Ek and Ep. The possible energy source terms are Gr&, the rate of transfer of kinetic 
energy from the mean flow to the disturbance due to Reynolds stresses, X2, the rate 
of change of kinetic energy due to buoyancy forces, GrX4, the rate of change of potential 
energy due to interaction of the disturbance with the vertical base flow temperature 
gradient, and Gr&, the rate of change of potential energy due to interaction of the 
disturbance with the horizontal base flow temperature gradient. Of course, for certain 
combinations of the governing parameters, any one of these terms can be negative, 
thereby representing an energy sink. The quantities X, and Pr-lX6 are always energy 
sinks: S, is the rate of loss of kinetic energy due to viscous dissipation, while Pr-l& is 
the rate of loss of potential energy due to heat diffusion. 

5. Numerical method 
High-order approximate solutions of the eigenvalue problem were obtained by 

Galerkin’s method. The disturbance variables were expanded in the finite series 

8(y) = 4 2  2 bn sin nny, 
n = l  

( 5 . 1 ~ )  

(5.1 b )  

where the $n are members of a complete set of eigenfunctions (sometimes called beam 
functions) satisfying the fourth-order equation $p) = ,u:,$~, with $n = $A = 0 on 
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y = 0 , l .  The eigenvalues ,un are roots of the transcendental equation coshp, cos ,un = 1. 
The procedure for determining the unknown coefficients a, and b, is straightforward. 
Let =Yl[Zanq5,, Xb,8,] = 0 and 9,[Xa,  q5m, Xb,8,] = 0 be symbolic representations of 
the equations resulting from substitution of the approximate solutions (5.1 a, b )  into 
the ordinary differential equations (3.4a, b ) .  Now form the successive inner products 

(5.3) 

This reduces the ordinary differential system to the complex generalized algebraic 
eigenvalue problem 

AX = ABx, (5.4) 

where xT = (a, b) = (al, a,, . . . , uN, b,, b,, . . . , b,) is the transpose of the column vector x. 
The coefficient matrices A and B are defined in the appendix. Both are of dimension 
2N x 2N,  A is complex, and B is real and symmetric. The elements of these matrices 
were computed from simple algebraic expressions obtained by exact evaluation of the 
inner product integrals. Details of the integration method are given in von Kerczek 
(1973) and in Bergholz (1976). 

A complex analogue of the QZ algorithm developed by Moler &, Stewart (1973) was 
used to solve the eigenvalue problem (5.4). For given values of Pr and y, neutral 
stability curves for both stationary and travelling-wave disturbances were found. 
Points on these curves were obtained by applying a secant method iteration either to 
Gr, with a fixed, or to a, with Gr fixed, until the condition 2, = 0 was satisfied to 
within a specified error. The eigenvalue 2 was the eigenvalue with the largest real part 
for the particular type of disturbance in question. The errors in a and Gr at the neutral 
point are estimated to be less than 1 yo. The critical values of a and Gr were determined 
by polynomial interpolation of points near the minimum of the neutral curve. The 
critical Grashof number for t,he flow is Gr, = min ( G e ,  Gr;) ,  where G e  and Grr are 
the critical Grashof numbers for the stationary and the travelling-wave disturbances, 
respectively. 

The convergence of the Galerkin method was tested by examining the variation of 2 
with N ,  the number of terms retained in the expansions (5.1 a, b ) .  Selected results are 
displayed in table 1 for several combinations of the governing parameters. The fastest 
convergence was achieved when the disturbance was stationary or when the product 
aGr was relatively small. Satisfactory accuracy throughout the entire parameter range 
was attained with N ranging from 24 to 30. 

The power integral components Ek, Ep and X,, ..., X6 are defined in the appendix 
in terms of the coefficient matrices, A and B, and the eigenvectors, a and b. The 
magnitudes of these components were computed at every critical point, and (4.1 a, b )  
yielded an identity to at  least six significant figures in most cases. 
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pr = 5; y = 1; 01 = 2.77; Gr = 8 x 103 Pr = 0.73; y = 6; u = 2.78; Gr = 1.86 x 10' 
I 

A A 
-l I > 

N 4 c x 103 N A, c x  108 
10 0.34113 0 10 - 0.75870 1.20454 
14 0.53056 0 14 0.67526 1.20577 
18 0.52993 0 18 0.72347 1.20594 
22 0.62977 0 22 0.71056 1.20590 
26 0-52973 0 26 0.70154 1.20589 
30 0.52972 0 30 0.69758 1.20588 

pr = 6.7; y = 4.2; a = 1-07; Gr = 1.9 x 1 0 4  Pr = 1000; y = 9; u = 4-37; Gr = 3.5 x loa 
I 

N 
10 
14 
18 
22 
26 
30 

A 
5 ------- 

4 e x  103 N h, 
0.06319 4.33032 10 0~01111 
0.03395 4.33148 14 0*01098 
0.03189 4.33161 18 0.01097 
0.03158 4.33162 22 0.01097 
0.03151 4.33163 26 0*01097 
0.03149 4.33163 30 0.01097 

v 
c x  103 

0 
0 
0 
0 
0 
0 

TABLE 1.  Selected results of convergence tests of the Galerkin method. 

6. Results 
The effects of the vertical stratification upon the critical Grashof number, Rayleigh 

number, wavenumber, and wave speed were investigated for ten finite values of the 
Prandtl number ranging from 0.73 to 1000 as well as for the limiting condition of 
infinite Pr. Also, the relative strengths of the energy source terms (GrCl, C2, Gr&, and 
GrC,) for the critical disturbance modes were evaluated as functions of y and Pr. 
Finally, a series of computations was performed to obtain the critical parameters 
for those specific values of Pr and h found in the experimental work of Elder (1965), 
Vest & Arpaci (1969), and Hart (1971). 

In  the following two subsections, we f i s t  present the results for the Prandtl numbers 
of low to moderate magnitude, and then those for the larger Prandtl numbers. 

6.1. Low to moderate Prandtl numbers (Pr = 0.73-12.7) 
The variation of Gr, with y and Pr is illustrated in figure 3. The dashed and solid curves 
represent G$(y; P r )  and Gr,?(y; Pr )  for the stationary and the travelling modes, 
respectively, and the curve markers indicate the computed points. The critical curves 
in these and subsequent figures were obtained by cubic spline interpolation of the 
associated critical points. 

To begin, consider the behaviour of G e ,  ;t9 y increases, for the Prandtl numbers 
0.73-12-7. In  this Prandtl number range, there is only a weak dependence of Ge 
upon Pr,  and so, for the sake of clarity, only a single dashed curve (for Pr = 5 )  was 
drawn. The greatest deviation from this curve occurs for Pr = 0.73, but the difference 
is less than 3 yo. The calculated values of Ge are in close agreement with those reported 
previously for the stationary case (Korpela et al. 1973, for y = 0;  Birikh et al. 1969, and 
Gotoh & Mizushima 1973, for 0 < y < 4). However, in spite of the agreement with 
Gotoh & Mizushima (1973) for y = 1 , 2 , 3  and 4, their asymptotic formula for 'large' y ,  
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derived from a system similar to (3.6u-d), was found to be incorrect. In  terms of the 
scaling used in this paper, this formula is given by 

G C  = 462y3, y 2 3 (Pr = 7 4 ,  (6.1) 

the coefficient being determined from the computed values of Gr: at y = 3 and 4. 
A direct computation was made for Pr = 7.5, y = 4.8, which gave Grf = 5.21 x lo5, 
whereas (6.1) predicts G e  = 5.1 1 x lo4. The large discrepancy between the two values 
for G?f might be due to the fact that (6.1) was obtained using values of y which are 
rather small. Yet, it is also possible that (3.6~-d), together with the asymmetric 
boundary-layer profiles, W and 0, simply do not admit stationary solutions. None 
were found by Gill & Davey (1969) in their study of the buoyancy layer. If such solu- 
tions to (3.6a-d) do not exist, then the asymptotic relations (3.7), from which (6.1) 
follows, are meaningless in the stationary case. 

Returning to the discussion of figure 3, it can be seen that the flow is rapidly stabilized 
against stationary disturbances as the vertical stratification increases, and that, if 
Pr < 12.7, Gr, = Gr: if the Stratification is sufficiently small. However, if y exceeds 

A h 

FIGURE 3. Variation of the critical Grashof number (Gr,) with the stratification parameter ( y )  
for low to moderate Pr. - - - - -, stationary modes; -, travelling modes. Arrows indicate the 
values of y at the minima of the travelling-wave curves for Pr = 3-12.7. 
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a certain value, yl ,  which depends upon Pr, travelling-wave disturbances govern the 
onset of instability, and Gr,( = Gr:) is given by the solid curve for the appropriate 
value of Pr.  To avoid confusion, the segments of the curves for Gr,T which extend above 
the points of intersection with the dashed curve for G e  are not shown. The transition 
points for Pr = 0.73 and 3 occur at  very large values of Gr,, and so they must be 
estimated by extrapolation of the curves for G e  and Gr?. Detailed calculations were 
not pursued when Gr, became greater than about 9.3 x 105. The critical Grashof number 
for Pr = 12.7 is determined entirely by travelling-wave disturbances, which is eon- 
sistent with the fact that 12.7 is the limiting value of Pr for onset of travelling-wave 
instability in the conduction regime (Korpela et al. 1973). 

The curve for yl(Pr),  plotted in figure 4, defines theboundary between the stationary 
and travelling-wave domains in the low to moderate Prandtl number case. The magni- 
tude of y1 decreases as Pr increases, the variation being almost linear from Pr = 3 to 
Pr = 10. Points below the curve represent parameter combinations (y ,  Pr) for which 
Gr, = G e ,  while points above the curve are those for which Gr, = Gr:. 

After transition to travelling-wave instability, Gr, declines sharply a t  first, then 
passes through a minimum at a particular value of y ,  designated by y2,  and finally 
increases continuously with increasing y.  The minimum points, y2(Pr) ,  of the 
travelling-wave curves are indicated by the arrows in figure 3. 

The process of transition from stationary to travelling-wave instability is illustrated 
in figure 5 for Pr = 10. In this figure, the neutral curves for the stationary and travelling 
modes are shown for values of y near the transition value yl. At y = 3.1, the minimum 

FIGURE 4. The magnitude ( yJ  of the stratification parameter, a t  the point of transition from 
stationary to travelling-wave instability, as a function of the Prandtl number (Pr) .  
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FIGURE 5. Neutral stability curves for values of y near the point of transition from stationery to 
travelling-wave instability for Pr = 10. - - - - -, stationary modes; -, travelling modes. 

point of the stationary (dashed) curve is lower than that of the travelling-wave (solid) 
curve and, therefore, Gr, = Gr:. However, if y is increased slightly to 3.2, the minimum 
point of the travelling-wave curve extends downward to a level below the minimum of 
the stationary curve. Thus, a t  y = 3-2, Gr, = Gr:. The two curves continue their 
displacement relative to one another as y is further increased to a value of 4. Near 
y = 5 (not shown in figure 5 ) ,  the minimum point of the travelling-wave curve ceases 
its downward extension and begins to move upward with increasing y. 

Another interesting type of transition can be found in the travelling-wave neutral 
curve for Pr = 0.73 when y is near 8.75. As shown in figure 6, the neutral curve has two 
minima, one a t  a = 2.7, the other a t  a = 4.6. As y is increased or decreased from the 
value 8.75, the two minima shift their position relative to one another in such a way 
that, when y < 8.75, the high-wavenumber minimum determines the values of Gr, 
and at,, whereas t'helow-wavenumber minimum determines these values when y 2 8-75. 
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FIGURE 6 .  Neutral stability curve showing the low- and high-wavenumber minima for the travel- 
ling modes for Pr = 0.73 at y = 8.75. The absolute minimum is the low-wavenumber minimum 
at u, = 2.7. 

FIGURE 7. Variation of the critical wavenuniber (a,) with the stratification parameter (7) 
for all values of Pr. - - - - -, stationary modes; -, travelling modes. 
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FIGURE 8. Variation of the critical wave speed ( c  x lo3) with the stratification parameter (7) for 
all values of Pr. - ~ - - -, maximum base flow velocity, w ;  -,critical wave speeds. Arrows denote 
the values of y at which c = w for Pr = 3 to  12.7. 

Both Nachtsheim (1963), in his study of the natural convection boundary layer on 
a vertical plate, and Gill & Davey (1969), in their investigation of the buoyancy layer, 
found double minima in the neutral stability curves at low Pr. They showed that the 
low-wavenumber minimum disappears when the thermal disturbances, and, conse- 
quently, the effects of buoyancy, are neglected. Thus, the high-wavenumber minimum 
is associated with the purely hydrodynamic stability problem for the base flow velocity 
profile alone. In  the case of the buoyancy layer ( y  -+ m), the low-wavenumber minimum 
gives the critical values of & and & for all Pr 0.72. I n  contrast, the results of the 
present work for Pr = 0.73 show that the high-wavenumber minimum still dominates 
if y < 8.75. Presumably, there are upper limiting values of y for the high-wavenumber 
minimum for slightly greater values of Pr. However, this limiting value must decrease 
rapidly with increasing Pr, because our results also show that the low-wavenumber 
minimum establishes the critical point, for all values of y in the travelling-wave 
domain, if Pr 2 3. 

The dependence of the critical wavenumber, ac, on y and Pr is displayed in 
figure 7.  Just as for G e ,  a single dashed curve (for Pr = 5) was drawn for at for 
0.73 < Pr < 12.7, and a, is governed by this curve up to the starting point of the 
travelling-wave (solid) curve for the given value of Pr. We see that, in general, a: 
decreases as y increases for y < y l (Pr) ,  except for a very small increase near ac = 1.34. 
The stationary curve was not extended beyond a value of a: of about 1 .1 ,  because 
G e  had become very large at  this point. For y > y l ,  a, = af, which increases rapidly 
with increasing y in the interval y 1  < y 6 y z  and then more gradually for y > yz .  The 
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FIGURE 9. Variation of the critical Rayleigh number (Ra,) with the stratification parameter (7) 
for selected values of Pr. - - - ~ -, stationary modes for large Pr; - -, travelling modes for low 
to moderate Pr. 

sharp drop in af a t  y = 8.75 for Pr = 0.73 is due to the emergence of the low-wave- 
number minimum a t  af = 2.7 (see figure 6). 

Additional information regarding the nature of the travelling-wave instability can 
be obtained from figure 8, which shows the variation of the critical wave speed, c, with 
y for the various values of Pr. The dashed curve in this figure gives the maximum 
velocity (p) of the base flow as a function of y .  The curves for the travelling waves, for 
0.73 < Pr < 12-7, originate a t  the transition points given by y,(Pr) and a t  each of 
these points c < v. As y increases, c decreases in a manner similar to that of v, The 
curves for Pr = 3 to  12.7 eventually intersect the curve for v, with c being greater 
than w thereafter. The points a t  which c = w are marked by the arrows in figure 8. 
Referring back to  figure 3, we find that these points correspond almost exactly to the 
minima of the curves for Gr? in the travelling-wave domain. It is well known that the 
critical wave velocity must be less than the maximum velocity of the base flow in the 
case of inviscid, homogeneous, parallel shear flows. Therefore, the condition c > 
must be due t o  the action of buoyancy forces arising from the base flow temperature 
field. Finally, we see that t,he curve for Pr = 0.73, which begins a t  a value of c 
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FICUEE 10. Convergence of the critical Reynolds number (A,), wavenumber (&), and wave speed 
( 2 )  (for finite y )  to their respective asymptotic values for the buoyancy layer ( y  + 00). The curves 
for &,z and 2, computed from (3.7), and the myniptotes, obtained from Gill & Da.vey (1969), are 
for Pr = 10. 

High wavenumber: y = 8 Low wavenumber: y = 10 
B 112.6 (109) 103.8 (101) 
oi 0.541 (0.502) 0.300 (0.281) 

0.195 (0.200) 0.271 (0.281) n 

TABLE 2. Critical parameters for the high- and low-wavenumber minima for Pr = 0-73. 
The parenthetical values are from Gill & Davey (1969) for Pr = 0.72. 



Natural convection in a vertical Jluid layer 759 

Y 

1.0 
3.0 
4.4 
5.5 
6.0 
8.0 
8.75 

12.0 

1.0 
3.0 
4.4 
4.6 
4.7 
4.8 
4.5 
4.7 
5.0 
5.4 
6.0 
8.0 

10.0 
15.0 

1.0 
3.0 
4.0 
5.0 
7.0 
9.0 

15.0 

1.0 
4.0 
6.0 
8.0 

12.0 
7.0 
8.0 
9.0 

12.0 

a, 

2.80 
2.78 
1.21 
0.95 
2.78 
4.33 
2.70 
3.52 

2.77 
2.57 
1.33 
1.34 
1.28 
1.20 
0.54 
1.38 
1.90 
2.30 
2.69 
3.40 
3.98 
5.96 

0.77 
1.35 
2-10 
2.73 
3.44 
4.08 
6.69 

2.62 
3.08 
3.60 
4.08 
5.26 
2.8 1 
3.81 
4.37 
5.04 

arc x 

8.07 
11.47 
81.86 

507-72 
184.62 
230.63 
291.21 
700.90 

7.90 
11.59 
82.59 

193.99 
307.58 
520.46 

66.14 
25.81 
19.29 
17.54 
18.36 
32-7 1 
62.35 

209.72 

6.89 
5.06 
4.66 
5.41 

10.09 
20.40 
94.43 

0.251 
0.311 
0.547 
1.059 
3.340 
0.310 
0.240 
0.319 
0.989 

c x  103 arc, 
Pr = 0.73 

0 0.9399 
0 1,0084 
0 1.2202 
1.192 1.1450 
1.206 1.0615 
0.763 0.8574 
0.855 0.4534 
0.482 0.3947 

Pr = 5.0 
0 0.8153 
0 0.9220 
0 1.2439 
0 1.2039 
0 1.1826 
0 1-1561 
3.779 -0.0770 
3.550 -0.1315 
3.235 -0.1679 
2.863 -0.1561 
2.402 -0.1322 
1.450 - 0.1019 
0.957 - 0.1 103 
0'426 -0.1117 

Pr = 12.7 
7.448 0.0193 
6.342 -0.0174 
4.926 - 0.0756 
3.594 - 0.0887 
2'033 - 0.0578 
1.278 - 0.0582 
0.463 - 0.0610 

Pr = 1000 
8.385 - 0.001 1 
5.524 - 0*0015 
2.973 - 0.0010 
1.820 - 0.0009 
0.866 - 0.001 1 
0 - 0.0030 
0 - 0.0016 
0 - 0.0015 
0 - 0.0023 

0.0601 - 0.0002 
- 0.0084 0.0022 
- 0.2202 0.3666 
-0.1450 0,1077 
-0.0615 0.0277 

0.1426 - 0.0552 
0.5466 - 0.2075 
0.6053 - 0.2365 

0.1847 - 0.000 1 
0.0078 - 0.0039 

- 0.2439 0.1894 
- 0.2039 0.2916 
-0.1826 0.3229 
-0.1561 0.2696 

1.0770 -0.0522 
1.1316 -0.0655 
1.1579 -0.0898 
1.1551 -0.1268 
1.1324 -0.1877 
1.1019 -0,3468 
1.1104 -0.3908 
1.1117 -0.3926 

0.9807 - 0.0005 
1.0174 -0.0310 
1.0756 - 0.0735 
1.0888 - 0.1469 
1.0578 - 0.3660 
1.0582 - 0.4641 
1.0610 -0.4693 

1.001 1 - 0.0003 
1.0015 -0.0621 
1.0010 - 0.2412 
1.0009 - 0.4453 
1.001 1 - 0.5706 
1.0030 -0.3615 
1.0016 -0.8352 
1.0015 - 1.0171 
1.0023 - 0.6832 

QrZ, 

1.0002 
0.9978 
0.6334 
0.8923 
0.9723 
1.0552 
1,2075 
1.2365 

1.0001 
1.0039 
0.8103 
0.7083 
0.6771 
0.7304 
1.0522 
1.0656 
1.0898 
1.1271 
1.1883 
1.3470 
1.3908 
1-3925 

1.0005 
1.0313 
1-0738 
1-1470 
1-3660 
1.4542 
1.4594 

1.0002 
1.0613 
1.2408 
1.4425 
1.5710 
1.3599 
1.8378 
2.0182 
1.6832 

TABLE 3. Selected values of the critical parameters and power integral components. 

considerably less than w, does not intersect the w curve within the range of y con- 
sidered. This is to be expected, because the thermal disturbances tend to be heavily 
damped at  low values of Pr. (Note the small jump at  c in y = 8.75, the point at  which 
the low-wavenumber minimum determines Gr, and ac.) 

It is also informative to examine the behaviour of R a f ( y ;  Pr)  in the travelling-wave 
regime for 0.73 < Pr < 12.7 (see thesolid curvesin figure 9). Intheinterval y1 Q y < ya, 
there is a significant dependence of Ra?, as well as Gr:, upon Pr. However, in the 
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domain y > y,, the curves for RUT are almost coincident, although RaT increases 
slightly with Pr at any given value of y. Such a weak influence of Pr on Ra: is another 
indication that buoyancy forces are the dominant source of instability when the 
vertical stratification becomes sufficiently large. 

To verify the asymptotic relations (3.7), comparisons were made with the results 
obtained by Gill & Davey (1969) for the buoyancy layer. For the case Pr = 10 ( y  -+ a), 
Gill & Davey found BC = 8.50, &c = 0.436, c  ̂ = 0.409. Using (3.7) and our computed 
values for Gr:, a:, and c for Pr = 10, the values of BC, kc, and 2 for finite y were 
calculated. The results are displayed in figure 10. At y = 8, the critical Reynolds 
number, BC, is within about 1 yo of its asymptotic value and, for y > 10, the values of 
all of the critical parameters are identical with those for the buoyancy layer. In table 2, 
R,, $, and 2 for Pr = 0.73 are listed for both the high- and the low-wavenumber 
critical points. The corresponding values for the buoyancy layer, for Pr = 0.72, are 
given in parentheses. Again, the agreement at  large y is rather good. Thus we can 
conclude that the asymptotic results for the buoyancy layer are valid for the vertical 
slot in the travelling-wave regime, at  least for low to moderate Prandtl number, if y is 
sufficiently large. 

The power integral computations provided a significant amount of information 
about the energetics of the critical disturbance modes in the various domains of 
instability. A sampling of critical parameter values and relative magnitudes of the 
power integral source terms are recorded in table 3. Equations (4.1 a, b )  were normalized 
by setting the viscous and thermal dissipation terms, C, and Pr-1C6, equal to - 1 .  
Therefore, the sums GrC, +I;,- 1 and GrZ,+GrX,- 1 should be zero, or very near 
zero, at  the critical points. At present, attention is restricted to the results for Pr = 0.73, 
5, and 12.7. As expected, we find that the stationary disturbances (c, = 0) derive 
most of their energy from the mean flow through the Reynolds stress production term, 
GrC,. Thus, the stationary modes for low to moderate Pr are essentially instabilities 
resulting from the viscous shear at  the midplane of the slot. However, note that 
when y is small (conduction regime) there is also a positive contribution to the disturb- 
ance kinetic energy from the work of buoyancy forces, as indicated by the positive 
values for C, at y = 1.  Similar results for the conduction regime for Pr = 0.73 and 6.7 
were obtained by Hart (1971). As y increases, I;, decreases and eventually becomes 
negative, but an interesting reversal in this trend can be seen in the interval 
4.6 < y < 4.8 for Pr = 5. As mentioned above, in this interval, a, increases slightly 
and then declines at  a slower rate than before (see figure 7). It is possible that X, again 
will become positive at larger values of y ,  but more extensive computations would be 
needed to verify this. 

In  the travelling-wave regime, the Prandtl number plays a much more influential 
role in determining the mechanics of the instability. In the low Prandtl number case 
(Pr  = 0.73), GrX;, is the dominant source term when y < 8.75. Even in the domain 
y 2 8-75, where the buoyancy term C, predominates, the Reynolds stress is still an 
important contributor to the disturbance kinetic energy. In  contrast, instability at  
the higher Prandtl numbers, Pr = 5 and 12.7, is entirely buoyancy driven, because 
GrZl is always negative, at  least for the values of y investigated, and I;, is always 
greater than 1 .  Also, note that IGrX,l and Z, are greatest at values of y near the mini- 
mum points of the curves for Grr (see figure 3). 
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FIGURE 11. Variation of the critical Grashof number (Gr,) with the stratification parameter (7) 
for large Pr. - - - - -, stationary modes; -, travelling modes. 

6.2. Large Prandtl numbers (Pr = 20-1000) 
If the Prandtl number is large, increasing the vertical stratification induces a transition 
in the mode of instability opposite to that found at  low to moderate Prandtl numbers. 
This behaviour is illustrated in figure 1 1, which shows the Gr, curves for Pr = 20-1 000. 
It can be seen that, when Pr 2 50, Gr, = Gr: if y < yl, but Gr, = G$ if y > y l ,  where, 
as before, y,(Pr) denotes the transition value of y. The values of y1 are estimated to be 
y1(50) -N 8.2, yl(  100) 21 7.3, and yl( 1000) N 6.6. The travelling-wave curve for 
Pr = 1000 is very close to that obtained by Gill & Kirkham (1970), who analysed the 
stability problem in the particular limit Pr -+a with PdGr  fixed. However, the 
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stationary curves for Pr = 20-1000 have not previously been found. These curves have 
the same shape as those for Gr,T at low to moderate Pr, and, as Pr increases, their 
minima tend to occur at  a nearly constant value of y ,  N 7.75. 

The large Pr travelling-wave results for af and c (see figures 7 and 8) are qualitatively 
similar to those for Pr = 12.7, except that, owing to the enhanced effects of buoyancy, 
the critical wave velocities for Pr = 50-1000 are always greater than the maximum 
velocity of the base flow. Also, note that the af curve for Pr = 1000 has a smaller 
slope at large y than the corresponding curves for the lower Prandtl numbers. This 
result is consistent with the variation of ti, with Pr in the buoyancy layer. Gill & Davey 
(1969) found tic = 0.463 for Pr = 100 and &, = 0.417 for Pr = 03, whereas, using our 
calculated values for af at y = 15, and the asymptotic formula &, = a f / y ,  we obtain 
&, = 0.461 at Pr = 100 and &, = 0.427 at Pr = 1000. 

Near the transition points, the trend of the large Pr curves for af is the same as that 
of the af curves for the Prandtl numbers 0.73 to 10, but, when the vertical stratifica- 
tion becomes sufficiently large, af increases, with increasing y ,  at a slower rate than 
does 01:. 

The critical Rayleigh number, Raf(y;  Pr),  for the large Prandtl number stationary 
modes behaves in the manner shown by the dashed curves in figure 9. For all values of 
y ,  the dependence of Ra, upon Pr becomes progressively weaker as Pr increases. This 
result suggests that the proper limit for the stationary modes is Pr -+ 03 with Ra fixed 
(Gr-t  0). In  this limit, ( 3 . 4 ~ )  reduces to 

while (3.4b) remains the same. The corresponding algebraic eigenvalue problem, now 
of dimensions h; x N ,  then becomes 

LP+ +el = 0, (6.2) 

AX = AX, 

where the component matrices of A are given in the appendix. The system (6.3) was 
solved to give t,he Pr = 03 stationary curves shown in figures 7 and 9. As expected, the 
af and Rat curves for infinite Pr are almost indistinguishable from those for Pr = 1000. 

It is interesting to note that neutrally stable travelling-wave solutions of (6.3) could 
not be obtained. However, examination of the eigenvalue spectrum, for y = 10, 
revealed that the second mode represents a stable travelling wave of exactly the same 
type as that found by Gill & Davey (1969), for the buoyancy layer, in the limit 
Pr -+a with Pra fixed [see (3.6~-d)].  The absence of neutrally stable solutions, under 
the above limit, led Gill & Davey to examine the alternative case Pr -+ 03 with Pri 
fixed, for which travelling-wave instability does exist. As mentioned above, Gill & 
Kirkham (1970) later studied a similar limit for the vertical slot and found travelling- 
wave instability but no stationary instability. Gill & Kirkham's limit was investigated 
in the present work also and, again, no neutrally stable stationary solutions were 
found. 

The magnitudes of the critical parameters and power integral components for 
Pr = 1000 are given in table 3. The disturbance kinetic energy for travelling-wave 
instability and stationary instability is derived from the buoyancy source term, &, 
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with the Reynold8 stresses, represented by GrC,, providing a rather small, negative 
contribution to the kinetic energy in both cases. However, note that, in the domain in 
which stationary instability predominates, the relative contribution to the disturbance 
potential energy from the term Gr&, which involves the horizontal base flow tempera- 
ture gradient, is larger for the stationary modes than for the travelling modes. 

7. Discussion 
In  this paper, the instability of steady natural convection of a stably stratified fluid 

between vertical surfaces maintained a t  different temperatures has been investigated. 
The magnitude of the stable vertical stratification, represented by the parameter y ,  
and the value of the fluid Prandtl number, Pr, were found to have a strong influence 
upon the type and character of the instability. At both low and high Prandtl numbers, 
a change in the mode of instability occurs if the vertical stratification is increased 
beyond a certain level; that is, if y exceeds a certain value denoted by yl. The magni- 
tude of yl ,  as well as the nature of the transition in the mode of instability, depends 
upon the value of Pr. If Pr < 12.7, then the critical disturbance modes are stationary 
if y < y l ,  but they are travelling waves if y > yl. In  this range of Prandtl numbers, y1 
decreases as Pr increases until Pr = 12.7, at which point y1 = 0 and travelling waves 
determine the onset of instability for all y in the interval 0 < y < 15. A t  high Prandtl 
numbers, the critical modes are travelling waves if y < yl, but, if y > y l ,  they are 
stationary. In the large Prandtl number case, the value of y1 decreases as Pr increases 
from 50to 1000. However, in the limit Pr -+ 00 with Ra fixed, travelling-wave instability 
disappears altogether, and so, in this case, there is no transition value of y. 

When Pr < 12.7 and y < y l ,  the critical Grashof number, Grf,  increases as y 
increases, and there is a weak dependence of Gr: upon Pr. The energy for stationary 
instability at low to moderate Pr is derived mainly from the base flow velocity field 
through the action of disturbance Reynolds stresses at the midplane between the 
upward and the downward flowing convective streams. Buoyancy forces work to 
enhance the instability when y is small and to retard it when y becomes sufficiently 
large. The stabilizing effect of an increase in the vertical stratification derives from 
a corresponding decrease in the velocity gradient at the centre-line of the channel (see 
figure 2).  

The travelling-wave regime, for any given value of Pr < 12.7, is divided into two 
subdomains. The first is defined as the interval y1 < y < yz, where yz, which decreases 
with increasing Pr,  is the value of y at the minimum point of the appropriate critical 
curve for Gr,T (see figure 3). Within this interval, Gr,' decreases as y increases, and 
both Gr: and Ra,T are strongly dependent upon Pr. The second subdomain corresponds 
to the region y > yz, in which Gr: increases with increasing y.  One of the most interest- 
ing characteristics of the second subdomain is the rather small dependence of Ra: 
upon Pr. For the Prandtl numbers 0.73-12.7, the variation in RUT, at a particular 
value of y ,  is less than 20% for 8 < y < 15. In both subdomains of the travelling- 
wave regime, the instability is almost entirely buoyancy driven, except for low values 
of Pr,  in which case shear instabilities of the critical-layer type can occur if y is not too 
large. It also should be noted that, at  comparable values of Gr above the critical value, 
the growth rates of unstable travelling waves are significantly smaller than those for 
stationary disturbances. 
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Experiment 

Investigators Fluid Pr h Grc a, 
Elder (1965) Silicone oil 1000 19 3.3 x 10% 30% t 0 

Vest & Arpaci (1969) Air 0.71 33.33 8.7 x lo3 2.74 0 

Hart (197 1) Water 6.7 37.04 1 . 5 ~  lo4 t t 
Silicone oil 900 20 4.11 x lo2) ' lo% 3.5 0 

Water 6.7 25 1 . 9 4 ~  lo'} 2.1 6-7 x 

Theory: T h  = &. y = (Ra/Bh)* 

Y Pr h Gr, a, a, c 
6.91 1000 19 3 4 7  x 10% 2-65 0 
2.21 0.71 33.33 8 . 9 2 ~  lo3 2.76 0 
6-89 900 20 4.00 x 10' 2.59 0 
4.32 6.7 37.04 1 . 5 3 ~  10' 1.40 5.84 x 
4.73 6.7 25 1.20 x 104 2.00 7.33 x 10-3 

-f Not determined. 

TABLE 4. Comparison of theoreticd results with available experimental data. 

One of the most import,ant findings of this study is the transition from travelling- 
wave to stationary instability which occurs a t  high Prandtl numbers. Stationary 
critical modes a t  high Prandtl numbers have been reported previously only by Vest & 
Arpaci (1969), but, as mentioned in $ 1 ,  an error in their analysis has cast some doubt 
on their theoretical results. They omitted the term - 4y4q5' in ( 3 . 4 b ) ,  in which case the 
potential energy source term GrE4, in (4.1b), would be absent. As shown in table 3, 
GrZ4 is strongly negative in the stationary regime and, therefore, not negligible. 

The variation of Gr: with y at high Prandtl numbers is qualitatively similar to the 
variation of Gr: with y a t  low to moderate Prandtl numbers. Also, the critical Rayleigh 
number, R a f ,  in the large Prandtl number case has the same weak dependence upon 
Pr, in the subdomain y > yz, as does Ra,T for the lower Prandtl numbers. However, 
in both the travelling-wave and t,he stationary regime, instabilit,y a t  large Pr is 
dominated by the effects of buoyancy. 

Instabilities of the flow in the vertical slot were observed experimentally by Elder 
(1965), Vest & Arpaci ( 1  969), and Hart (1971). A series of computations was performed 
€or values of Pr and h (aspect ratio) appropriate for their experiments. The stratifica- 
tion parameter, y ,  corresponding to a given aspect ratio and Rayleigh number was 
calculated using (2.4d) and the approximate relation 7h = Q (see Elder 1965). The 
experimental and the predicted values for Gr,, a,, and c are listed for comparison in 
table 4. The theoretical results for stationary instability in the near-conduction regime 
(Pr = 0.71, y = 2.21) are quite close to the experimental values determined by Vest & 
Arpaci (1969). I n  this case, the weak, stabilizing effect of the vertical stratification is 
reflected in the fact that Gr,is about 10 yo above its pure conduction value a t  y = 0. The 
computed value for Gr, for travelling-wave instability in water (Pr = 6.7) compares 
well with the experimental value obtained by Hart (1971) for the larger of the two 
aspect ratios used in his experiments, but it is about 40 yo lower than the experimental 
value for the smaller aspect ratio. However, even in the latter case, the theoreticaI and 
experimental values of the critical wavenumber, a,, and critical frequency, acc, are 
in reasonable agreement. Hart also found such agreement for the wavenumber and 
frequency for the case h = 25 but, in his analysis, he used the relation 7h = 0.62 and 
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applied a small, empirically determined correction factor to the parameter y. Thus, his 
theoretical results cannot be compared directly with those given in table 4. Neverthe- 
less, it is worthwhile noting that his computed value of Gr, for h = 25 is only about 10 yo 
higher than ours, while for h = 37.04 it  is about 40 yo lower. These differences are not 
surprising, because, as can be seen in figure 3, Gr, varies significantly within the small 
range of y covered by his experiments. 

As mentioned in the introduction, experimental observations of stationary instabil- 
ities in high Prandtl number fluids have been in conflict with previous theoretical 
predictions of travelling-wave instability a t  large Pr (Gill & Kirkham 1970). Also, 
de Vahl Davis & Mallinson (1975) have found steady solutions of the full, nonlinear 
Boussinesq equations in a finite vertical slot, for Pr = 1000, a t  values of Gr, slightly 
greater than the experimentally determined values. These solutions have the form 
of a multicellular secondary flow superimposed upon the (approximately) parallel 
base flow. De Vahl Davis & Mallinson suggested that the failure of the linear stability 
theory to predict the onset of stationary instability a t  large Pr might be due to the 
assumptions of a parallel base flow and an infinitesimal disturbance amplitude. How- 
ever, as pointed out in the previous section, the large Pr limit studied by Gill & 
Kirkham simply does not admit neutral stationary solutions. As shown in table 4, the 
values for G$ obtained in the present study are in very good agreement with the 
experimental values reported by Elder ( 1  965) and by Vest & Arpaci (1 969). The value 
of 3.5 for the critical wavenumber given by Vest & Arpaci is somewhat higher than the 
theoretical value, but it should be pointed out that the neutral curve corresponding to  
their experimental parameters is rather flat near its minimum point. The neutral 
Grashof number a t  a = 3-5 was found to be Gr, = 4.14 x lo2, which is still quite close 
to  the experimental result for Gr,. 

An estimate of the limiting value of the aspect ratio, h, required for a transition in 
the mode of instability can be obtained from (2.4d) and the approximate relation 
7h  = 4. For transition to  travelling-wave instability in water (Pr  = 6.7, y1 = 4.0), we 
find h, 97, whereas, for transition to stationary instability in oil (Pr = 1000, 
y1 = 6-6), the result is h, c1 44. The magnitudes of h, computed for each case suggest 
that  it might be possible to verify bot,h types of transition experimentally. 

A final comment regarding the recent theoretical paper by Mizushima & Gotoh 
(1976), which pertains to the subject of the present work, is in order. I n  this paper, 
stability calculations were performed for the case Pr = 7.5, with y ranging from 5.6 
to 8. These parameter values are within the regime for travelling-wave instability. 
Denoting their stratification parameter by m, and their critical Grashof number and 
critical wavenumber by &, and Z,, respectively, the appropriate transformations 
between their parameters and ours are as follows: y = 2m, a = 2E, Gr, = 16G,. I n  
table 5, the transformed critical values reported by Mizushima & Gotoh are contrasted 
with those found in the current study. The values of Gr, obtained from the asymptotic 
relation for Pr = 7.5 are also shown. Clearly, our results are quite different from those 
of Mizushima & Gotoh, our value of Gr, a t  y = 5.6 being lower than theirs by more than 
a factor of 5.  However, our value of Gr, a t  y = 8 is within 5 yo of the asymptotic value. 
Mizushima & Gotoh derived the same asymptotic relation, in terms of their scaling, as 
that given in the table, but they did not provide a comparison of their tabulated critical 
values with those predicted by the asymptotic formula. Their curve for Gr, is shown to 
merge smoothly with t,he large y asymptote a t  the value y = 8, but, unfortunately, 
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Mizushima & Gotoh Asymptotic 
Present study (1976) relation 

h A 
I 7 r \ 

Y Qrc a c  Gr, a, Gr, = 42ya 

5.6 10 673 2.72 56 000 1.4 7 376 
6- 0 11 742 2.88 38 400 2.2 9 072 
7.0 15 957 3.22 41 600 2.8 14 406 
8.0 22 548 3.53 54 400 3- 2 21 504 

TABLE 5. Comparison of results af'the present study with those of 
Mizushima & Gotoh (1976). Pr = 7.5. 

this cannot be reconciled with the figures given in table 5. Although the numerical 
solutions obtained in the current study are, of course, approximate ones based upon 
the particular trial functions used in the Galerkin method, the validity of the results is 
supported by numerous checks made on the convergence, accuracy, and consistency 
of the computations. Mizushima & Gotoh did not provide numerical examples of the 
convergence or accuracy of their computational method and, thus, it is not possible to 
identify the source of the discrepancies between their results and those reported here. 

The author is indebted to Professor Chia-Shun Yih for his advice and encourage- 
ment during the course of this study. This work constitutes part of a Ph.D. thesis 
submitted to the Department of Applied Mechanics and Engineering Science in the 
University of Michigan. It was supported by the National Science Foundation and the 
office of Naval Research. Part of the computations were performed in the Computing 
Center of Argonne National Laboratory. Special thanks are due to Mrs Emma Taylor 
and to Mrs Debby Weck for typing the manuscript. 

Appendix 
The coefficient matrices of the linear algebraic system (5.4) are written in the form 

where the elements of the various submatrices are defined by 
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